Юридический портал. Льготный консультант

Цель работы

Изучить принципы нормирования параметров микроклимата в производственных помещениях.

Экспериментально определить параметры микроклимата на рабочем месте и оценить их на основании действующих санитарных норм.

Основные параметры микроклимата и их влияние на организм человека

Под микроклиматом в производственном помещении понимают совокупность параметров воздуха: температура, влажность, скорость его перемещения, при условии, что отсутствуют источники излучения с эквивалентной тепловой температурой выше 40 о С. Микроклимат на производстве необходим для производительной и качественной работы человека. Обычно имеют в виду микроклимат рабочего помещения, в котором может быть производство, читальный зал, банковский оффис и др.

Нормирование параметров микроклимата в производственных помещениях состоит из измерения параметров воздуха и их сравнении с нормами, полученными в результате исследований специалистами по гигиене труда. При соответствии параметров микроклимата нормам дается положительное заключение. При несоответствии - должны быть проведены работы по приведению микроклимата к норме. В настоящее время существует множество способов влияния на микроклимат, от использования теплорадиаторов и кондиционеров до автоматических систем поддержания микроклимата.

Нормирование микроклимата представляет собой довольно простой процесс, доступный лаборанту. Чтобы обучить этого лаборанта и правильно проектировать системы поддержания микроклимата инженер должен владеть более широкими знаниями, краткое изложение которых дается ниже.

Человек представляет собой открытую биологическую систему, которая характеризуется тем, что потоки энергии, вещества и информации являются сквозными и косвенно отзывающимися в этой системе. Длительность прохождения этих потоков специфична для различных экологических систем, в том числе и для людей. Тепло - форма энергии, имеющая важное значение для поддержания живых организмов. Все живые системы нуждаются в непрерывном снабжении теплом для предотвращения их деградации и гибели. Температура является показателем количества тепловой энергии в системе и основным фактором, определяющим скорость химических реакций в организме. Основным источником входной энергии является пища, характеризуемая количеством ккал 1 , и различные виды лучистой энергии, измеряемыми интенсивностью их потоков в Вт/м 2 . Выходом энергии являются производимая организмом работа, потери за счет явлений теплопередачи и конвекции, излучение тепла и испарение жидкости с поверхности тела.

С точки зрения биологии человек относится к эндотермным животным, т.е. температура его тела не зависит от состояния окружающей среды и поддерживается постоянной гомеостатическими системами регулирования в организме. Для человека такой температурой являются значения 36,5 -37 о С. При этом под температурой тела имеют ввиду температуру тканей, лежащих глубже 2,5 см под поверхностью кожи. Температура поверхности кожи человека может иметь значения в широких пределах. Так при температуре окружающего воздуха 19 о С температура кожи на конечностях становится равной 20,5 о С.

Уравнение теплового баланса для организма человека за определенный период времени может быть представлено в следующем виде:

M +S  R  C  P  E = 0, (1)

M - тепло процессов метаболизма, полученное из химических субстратов пищи, подвергшихся расщеплению в клетках.

S - накопленное организмом тепло.

R, C, P - тепло отданное (со знаком -) или полученное (со знаком +) путем излучения, конвекции, теплопередачи,

E - тепло, отданное за счет испарения.

Если тепловой баланс не будет поддерживаться, то дополнительное тепло, полученное различными путями, приведет к повышению температуры тела, а недостаток тепловой энергии - к его охлаждению. В обоих случаях создаются неблагоприятные условия для функционирования клеток организма, которые при превышении определенных температурных границ внутри тела начинают погибать. Тепловой баланс любого тела определяется соотношением между теплом, которое оно получает, и теплом, которое оно отдает. Человеческий организм способен вырабатывать достаточное количество тепла и регулировать теплоотдачу, поэтому равенство поступающей с пищей энергии и других форм энергии в виде потоков лучистой энергии (например от нагретых батарей) и расхода тепла с тела человека всегда сохраняется. Это свойство носит название гомойотермии.

Для поддержания стабильности внутренней температуры человека имеется терморегулирующая система, которая включает рецепторы, эффекторы и чрезвычайно чувствительный регуляторный центр в гипоталамусе 2 . У человека имеется примерно 150 тыс. холодовых и 16 тыс. тепловых рецепторов

В комфортных условиях для взрослого человека средних лет, при отсутствии физической нагрузки, для нормального осуществления жизненно важных функций в его организме должно производится 1800 ккал тепла в сутки. Это тепло в конечном итоге должно быть выведено из вне в силу непрерывности метаболических процессов.

Средняя за сутки метаболическая мощность человека P h [Вт] определяется калорийностью пищи Q [кал]:

P h = 4,1868 Q / (24x60x60) = 4,85 10 -5 Q.

Эта мощность тратится на выполнение человеком призводственной работы и на работу гомеостатическтх систем человека. Чем неблагоприятнее параметры микроклимата, тем больше энергии тратится на терморегулирование организма человека.

Механизм выхода энергии регулируется гомеостатическими системами регулирования в организме, призванными поддерживать постоянство внутренней температуры тела человека 36,6 о С. Это необходимо для нормального функционирования биологических клеток организма. Поддержанию постоянства температуры внутренней среды человека способствует разветвленная кровеносная система, обеспечивающая отвод тепла от внутренних органов к поверхности тела. С наибольшей скоростью кровь течет в аорте (0,5м/с), в артериях достигает 0,25 м/с, а в капиллярах снижается до 0,5 мм/с. Медленное течение в капиллярах и их большая разветвленность способствует хорошему теплообмену. Общая длина капилляров у человека достигает 100 км, а их поверхность - 6300 м 2 . Другими словами это радиатор с огромными размерами по сравнению с человеком, что определяет эффективность его работы.

Для характеристики теплообмена следует соотнести величину основных энергозатрат с поверхностью тела человека, которая в среднем для мужского населения равна 1,8м 2 . При калорийности пищи в сутки 1800 ккал теплообмен составляет 40,5 кал/(чм 2). Калорийность пищи должна быть на 20% выше энергозатрат организма. При недостаточной калорийности организм стремится поддерживать постоянную температуру внутренней среды и протекание обменных процессов за счет питательных веществ некоторых тканей организма, прежде всего мышечных, что приводит к истощению.

Энергозатраты организма измеряются методами калориметра:

    прямая калориметрия - измерение непосредственно выделяемого тепла;

    алиментарная калориметрия - определении тепла при окислении пищевых продуктов;

    респираторная калориметрия - определение по обмену газов в легких, используя термические коэффициенты О 2 и СО 2 .

Работа, при которой энергозатраты организма составляют менее 2500 ккал в сутки оценивается как легкая . Работы с энергозатратами свыше 5000 ккал считаются тяжелыми . Категория работы может быть оценена по ее характеристике (см. табл.2).

Интенсивность работы гомеостатических систем регулирования внутренней температуры зависит от внешних условий среды: температуры, влажности, скорости ветра и наличия энергетических полей. Эффективность гомеостатических систем зависит от состояния нервной 3 и эндокринной 4 систем человека.

Ниже рассматриваются влияние метеоусловий условий на самочувствие человека с нормальным состоянием этих систем и естественными поведенческими функциями, выражающимися в выборе типа одежды и стратегии поведения при наличии внешних энергетических потоков 5 .

Микроклимат производственных помещений - климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.

Указанные параметры - каждый в отдельности и в совокупности - оказывают значительное влияние на работоспособность человека, его самочувствие и здоровье. В производственных условиях характерно суммарное действие микроклиматических факторов.

С целью создания нормальных условий установлены нормы производственного микроклимата (ГОСТ 12.1.005-76. “ССБТ. Воздух рабочей зоны”), которые определяют оптимальные и допустимые значения температуры, влажности и скорости движения воздуха в рабочих зонах производственных помещений с учетом тяжести выполняемой работы, периодов года (теплый или холодный и переходный) и характеристики помещений по избыткам явного тепла.

Оптимальные микроклиматические условия - сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения реакций терморегуляции. Оптимальные микроклиматические условия обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые микроклиматические условия - сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать приходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжения реакций терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.

Температура воздуха является одним из основных параметров, характеризующих тепловое состояние микроклимата.

Влажность воздуха - содержание в воздухе водяного пара. Различают абсолютную, максимальную и относительную влажность.

Абсолютная влажность (А) - упругость водяных паров, находящихся в момент исследования в воздухе, выраженное в мм ртутного столба, или массовое количество водяных паров, находящихся в 1 м 3 воздуха, выражаемое в граммах.

Максимальная влажность (F) - упругость или масса водяных паров, которые могут насытить 1 м 3 воздуха при данной температуре.

Относительная влажность (R) - это отношение абсолютной влажности к максимальной, выраженной в процентах.

В воздухе, избыточно насыщенном водяными парами, затрудняется испарение влаги с поверхности кожи и дыхательных путей, что может привести к ухудшению здоровья и снижению работоспособности. При понижении относительной влажности до 20-30 % у человека возникает неприятное ощущение сухости слизистых оболочек верхних дыхательных путей.

Движение воздуха человек начинает ощущать при скорости около 0,15 м/c. Если температура воздуха при этом менее 36 0 С, то человек ощущает освежающее действие воздушного потока. При температуре воздуха свыше 40 0 С такие потоки действуют угнетающе.

Непосредственным измерением трудно установить количество теплоты, отдаваемой человеком. Поэтому об интенсивности общей теплоотдачи судят по косвенным показателям - значениям эффективной и эквивалентно -эффективной температур, характеризующих пребывание в так называемой “зоне комфорта”, где терморегуляция обеспечивается организмом легко, или за пределами этой зоны, когда для нормальной терморегуляции организм человека преодолевает большие нагрузки. Эти температуры определяют по номограмме (см. рис. 1 на стенде).

Эффективной , ощущаемая человеком при определенной относительной влажности воздуха и при отсутствии его в помещении.

Эффективно-эквивалентной называется температура воздуха , ощущаемая человеком при определенной относительной влажности воздуха и определенной скорости его движения.

Применяемое оборудование

Лабораторная установка представляет собой макет помещения для моделирования различных метеорологических условий на рабочих местах.

Внутри макета (рис. 1) для измерения основных параметром микроклимата установлены аспирационный психрометр (1), барометр (2), анемометр крыльчатый (3), анемометр чашечный (4), секундомер (5), гигрометр (6). Для создания воздушного потока на лабораторном стенде имеется вентилятор, включение которого производится тумблером (7). Для изменения влажности воздуха внутри макета имеется емкость с водой (8).

В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров. Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры.

Рис. 1

Скорость движения воздуха измеряется крыльчатыми и чашечными анемометрами.

Аспирационный психрометр МВ-4М

Аспирационный психрометр МВ - 4М предназначен для определения относительной влажности воздуха в диапазоне от 10 до 100 % при температуре от -30 до +50 0 С. Цена деления шкал термометров не более 0.2 0 С. Принцип его работы основан на разности показаний сухого и смоченного термометров в зависимости от влажности окружающего воздуха. Он состоит из двух одинаковых ртутных термометров, резервуары которых помещены в металлические трубки защиты. Эти трубки соединены с воздухопроводными трубками, на верхнем конце которых укреплен аспирационный блок с крыльчаткой, заводимый ключом.

Перед измерением резервуар правого термометра, обернутый тонкой тканью, смачивается дистиллированой водой с помощью пипетки. Затем ключем заводят пружину вентилятора психрометра. При этом снизу засасывается воздух, который отекает резервуары термометров. Таким образом, сухой термометр показывает этого потока воздуха, а показания смоченного термометра будут меньше, так как он охлаждается вследствие испарения воды с поверхности ткани. Показания термометров снимаются не ранее, чем через 3 минуты после начала работы вентилятора.

При измерениях аспирационным психрометром значение абсолютной влажности находится из следующего выражения:

A = F вл  0,5(t сух  t вл)B  755 (2)

где А - абсолютная влажность воздуха, мм.рт.ст.;

F вл - максимальная влажность при температуре влажного термометра (t ВЛ), берется из табл. 1 на стенде;

t сух, t вл - температуры, измеренные соответственно сухим и влажным термометрами, О С;

В - барометрическое давление, мм.рт.ст.

Относительная влажность воздуха (R, %) определяется из следующего выражения:

R = 100A  F сух (3)

где F сух - значение максимальной влажности при температуре сухого термометра t сух берется из табл. 1 на стенде.

Относительная влажность может быть определена также по психрометрической номограмме (рис. 2 на стенде). Для этого по вертикальным линиям отмечают показания сухого термометра, по наклонным - показания влажного термометра; на пересечении этих линий получают значение относительной влажности, выраженное в процентах. Линии, соответствующие десяткам процентов, обозначены на монограмме цифрами: 20, 30, 40, 50 и т. д.

Анемометр крыльчатый АСО-3

Крыльчатый анемометр применяется для измерения скоростей движения воздуха в диапазоне от 0,3 до 5 м/с. Ветроприемником анемометра служит крыльчатка, насаженная на ось, один конец которой закреплен на неподвижной опоре, а второй - через червячную передачу передает вращение редуктору счетного механизма. Его циферблат имеет три шкалы: тысяч, сотен и единиц. Включение и выключение механизма производится арретиром. Чувствительность прибора не более 0,2 м/с. Для определения скорости движения воздуха, измеренной с помощью анемометра (крыльчатого или чашечного) используется выражение:

V =(C 2 - C 1)  T, (4)

где V - скорость движения воздуха, делений/с;

С 1 и С 2 - соответственно начальные и конечные показания анемометра, дел.;

T - продолжительность измерения, с.

Для перевода значения скорости движения воздуха из дел/с в м/с использовать график к крыльчатому анемометру (рис. 3 на стенде).

Значение эффективной и эквивалентно-эффективной температур, характеризующих пребывание в зоне, называемой “зоной комфорта”, определяют по номограмме (рис. 1 на стенде). Эффективная температура определяется по номограмме на пересечении прямой линии, соединяющей сухого и влажного термометров (полученных по аспирационному психрометру) и нижней линией температур при скорости движения воздуха, равной нулю.

Эквивалентно-эффективная температура определяется по номограмме таким же способом, как эффективная, только с учетом разных скоростей движения воздуха, показанных на монограмме изогнутыми линиями.

Под микроклиматом производственных помещений понимается климат окружающей человека внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих его поверхностей.

Воздействие фактора на организм человека

Микроклимат производственных помещений, в основном, влияет на тепловое состояние организма человека и его теплообмен с окружающей средой.

Несмотря на то, что параметры микроклимата производственных помещений могут значительно колебаться, температура тела человека остается постоянной (36,6 °С). Свойство человеческого организма поддерживать тепловой баланс называется терморегуляцией. Нормальное протекание физиологических процессов в организме возможно лишь тогда, когда выделяемое организмом тепло непрерывно отводится в окружающую среду.

Отдача теплоты организмом человека во внешнюю среду происходит тремя основными способами (путями): конвекцией, излучением и испарением.

Снижение температуры при всех других одинаковых условиях приводит к росту теплоотдачи путем конвекции и излучения и может привести к переохлаждению организма.

При высокой температуре практически все тепло, которое выделяется, отдается в окружающую среду испарением пота. Если микроклимат характеризуется не только высокой температурой, но и значительной влажностью воздуха, то пот не испаряется, а стекает каплями с поверхности кожи.

Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и эрозии, загрязнению болезнетворными микробами. Вода и соли, выделяемые из организма потом, должны замещаться, поскольку их потеря приводит к сгущиванию крови и нарушению деятельности сердечно-сосудистой системы.

Повышение скорости движения воздуха способствует усилению процесса теплоотдачи конвекцией и испарением пота. Длительное влияние высокой температуры в сочетании со значительной влажностью может привести к накоплению тепла в организме и к гипертермии состоянию, при котором температура тела повышается до 38…40 °С.

При низкой температуре, значительной скорости и влажности воздуха возникает переохлаждение организма (гипотермия). Вследствие воздействия низких температур могут возникнуть холодовые травмы. Параметры микроклимата оказывают также существенное влияние на производительность труда и на травматизм.

Классификация фактора

В соответствии с действующей классификацией, приведенной в Руководстве Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» микроклимат подразделяется на нагревающий и охлаждающий .

Нагревающий микроклимат – сочетание параметров микроклимата (температура воздуха, влажность, скорость его движения, относительная влажность, тепловое излучение), при котором имеет место нарушение теплообмена человека с окружающей средой, выражающееся в накоплении тепла в организме выше верхней границы оптимальной величины (>0,87 кДж/кг) и/или увеличении доли потерь тепла испарением пота (>30%) в общей структуре теплового баланса, появлении общих или локальных дискомфортных теплоощущений (слегка тепло, тепло, жарко).

Охлаждающий микроклимат – это состояние микроклимата в производственном помещении, при котором температура воздуха на рабочем месте ниже нижней границы допустимой . Образуется дефицит тепла в организме, человек ощущает холод.

Нормируемые показатели фактора

Перечень нормируемых показателей микроклимата приведен в таблице 1.

Таблица 1

Нормативные значения

Оптимальные и допустимые значения параметров микроклимата для производственных помещений установлены Санитарными правилами и нормами СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений». Их значения зависят от периода года (холодный или теплый), а также категории выполняемых работником работ.

К категории Iа относятся работы с интенсивностью энерготрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т.п.).

К категории Iб относятся работы с интенсивностью энерготрат 121 – 150 ккал/ч (140 – 174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т.п.).

К категории IIа относятся работы с интенсивностью энерготрат 151 – 200 ккал/ч (175 – 232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.).

К категории IIб относятся работы с интенсивностью энерготрат 201 – 250 ккал/ч (233 – 290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.).

К категории III относятся работы с интенсивностью энерготрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

Оптимальные величины показателей микроклимата на рабочих местах производственных помещений приведены в таблице 2.

Таблица 2

Период года Категория работ Температура воздуха, °С
Холодный 22 – 24 60 – 40 0,1
21 – 23 60 – 40 0,1
IIа 19 – 21 60 – 40 0,2
IIб 17 – 19 60 – 40 0,2
III 16 – 18 60 – 40 0,3
Теплый 23 – 25 60 – 40 0,1
22 – 24 60 – 40 0,1
IIа 20 – 22 60 – 40 0,2
IIб 19 – 21 60 – 40 0,2
III 18 – 20 60 – 40 0,3

Допустимые величины показателей микроклимата на рабочих местах производственных помещений приведены в таблице 3.

Таблица 3

Период года Категория работ Температура воздуха, °С Относительная влажность воздуха, % Скорость движения воздуха, м/с
Холодный 20 – 25 15 – 75 0,1
19 – 24 15 – 75 0,1 – 0,2
IIа 17 – 23 15 – 75 0,1 – 0,3
IIб 15 – 22 15 – 75 0,2 – 0,4
III 13 – 21 15 – 75 0,2 – 0,4
Теплый 21 – 28 15 – 75 0,1 – 0,2
20 – 28 15 – 75 0,1 – 0,3
IIа 18 – 27 15 – 75 0,1 – 0,4
IIб 16 – 27 15 – 75 0,2 – 0,5
III 15 – 26 15 – 75 0,2 – 0,5

Нормативные значения показателей микроклимата для рабочих помещений с нагревающим микроклиматом, с охлаждающим микроклиматом, для открытых территорий и неотапливаемых помещений с учетом климатического районирования, а также распределение условий труда по фактору «микроклимат» по классам приведены в Руководстве Р 2.2.2006-05.

Если измеренные параметры соответствуют требованиям Санитарных правил и норм СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений», то условия труда по показателям микроклимата характеризуются как оптимальные (1 класс) или допустимые (2 класс) . В случае несоответствия – условия труда относят к вредным и устанавливают степень вредности, которая характеризует уровень перегревания или охлаждения организма человека.

Методика проведения измерений

Измерения параметров микроклимата необходимо проводить два раза в год – в холодный и в теплый период года. Измерения следует проводить на всех рабочих местах не менее трех раз за смену (в начале, в середине и в конце смены).

Если в течение рабочей смены работник находится в нескольких рабочих зонах, измерения проводятся в каждой из них.

При работах, выполняемых сидя, температуру и скорость движения воздуха измеряют на высоте 0,1 и 1,0 м, относительную влажность – на высоте – 1,0 м от пола или рабочей поверхности; для работ, выполняемых стоя – величины 0,1, 1,5 и 1,5 м соответственно.

При наличии источников лучистого тепла тепловое облучение измеряется от каждого источника.

При оценке микроклимата на открытой территории и в неотапливаемых помещений необходимо определить климатический регион.

Климатические регионы (пояса) (Рис.1) характеризуются следующими показателями:

температура воздуха (средняя зимних месяцев) и скорость ветра (средняя из наиболее вероятных величин в зимние месяцы) и подразделяются на:

Iа (особый) - 25 °С и 6,8 м/с;

I6 (IV) - 41 °С и 1, м/с;

II (Ш) - 18,0 °С и 3,6 м/с;

III(II) - 9,7 °С и 5,6 м/с; IV(I) - 1,0 °С и 2,7 м/с.

Расположение климатических регионов Российской Федерации представлено на рисунке 1.

Рисунок 1 – Климатические регионы России

При оценке микроклимата на открытой территории или в неотапливаемых помещениях необходимо оценивается также наличие или отсутствие регламентированных перерывов на обогрев.

Средства измерений

Средства измерений параметров микроклимата представлены на рисунке 2.

Рисунок 2 – Средства измерений параметров микроклимата

Мероприятия по устранению вредного воздействия микроклимата

К мероприятиям по улучшению производственного микроклимата относят:

  • рациональную организацию системы отопления и вентиляции (воздушный душ, кондиционирование воздуха;
  • совершенствование технологического процесса и механизацию тяжелых работ;
  • защиту от источников теплового облучения (защитные экраны) при нагревающем микроклимате;
  • устранение больших холодных поверхностей, утепление дверей, окон, оборудование тепловой воздушной завесы и установку тепловых пушек при охлаждающем микроклимате;
  • рационализацию режима труда и отдыха (введение регламентированных перерывов, оборудование комнаты отдыха);
  • применение средств индивидуальной защиты.

Микроклимат производственной среды определяется сочетанием следующих основных парметров: температурой воздуха, о С; относительной влажностью, %; скоростью движения или подвижности воздуха, м/с.

Температура воздуха – является одним из ведущих факторов, определяющих метеорологические условия.

Подавляющее большинство производственных процессов сопровождается выделением тепла (теплота выделяется при переходе электрической энергии в тепловую, при трении движущихся частей машин). Источниками тепла являются нагретые поверхности трубопроводов, стенок котельных агрегатов, нагревательных печей и т.д. Все они, распространяя тепло, увеличивают температуру окружающего воздуха. Большую долю в общий баланс тепла, особенно в летнее время, вносит энергия солнечного излучения (измеряется температура термометром). Другим важным параметром микроклимата является влажность воздуха.

Относительная влажность – это отношение содержания водяных паров в 1 м 3 воздуха к их максимально возможному содержанию при той же температуре. Влажность влияет на общее состояние человека, затрудняя или облегчая теплообмен между организмом и окружающей средой (при большой влажности воздуха теплоотдача путём испарения влаги с поверхности тела уменьшается, что может привести к перегреванию организма). Для измерения влажности воздуха используют психрометр или гигрометр.

Психрометр состоит из «сухого» и «влажного» термометров. На основании разностей показаний сухого и влажного термометров по психометрической таблице определяют относительную влажность воздуха.

Гигрометр (волосяной) основан на свойстве волоса укорачиваться при уменьшении влажности воздуха.

В понятие микроклимат производственных помещений входит также скорость движения воздуха. Влияние этого фактора на организм человека может иметь положительную и отрицательную стороны: небольшие скорости движения воздуха способствуют испарению влаги с поверхности тела, улучшая теплообмен между организмом и окружающей средой, а при движении воздуха с большими скоростями возникают сквозняки, приводящие к увеличению числа простудных заболеваний среди работающих.

Скорость движения воздуха определяется чашечным анемометром . Принцип работы анемометра основан на вращении потоком воздуха крестовины с чашками – полушарами. Скорость вращения крестовины зависит от скорости движения воздуха, поэтому подсчитывают число оборотов крестовины за контрольное время, а затем количество оборотов выводят на циферблат анемометра и определяют скорость движения воздуха.

Влияние метеорологических факторов на организм человека необходимо рассматривать в их совокупности.

Параметры микроклимата могут меняться в очень широких пределах. При благоприятных сочетаниях параметров микроклимата человек испытывает состояние теплового комфорта, при неблагоприятных – организм человека стремиться сохранить постоянство температуры тела за счёт терморегуляции.

Отклонение параметров микроклимата от оптимального может быть причиной ряда физиологических нарушений в организме человека. Например, высокая температура воздуха в сочетании с малой подвижностью его вызывает ощущение жары, а в сочетании с высокой относительной влажностью способствует перегреванию организма, что может привести к тепловому удару. При пониженной температуре воздуха и высокой скорости его движения наступает переохлаждение организма, которое приводит к простудным заболеваниям.

В соответствии с санитарными нормами СН245-71 и ГОСТом 12.1.005-88 ССБТ. «Воздух рабочей зоны. Общие санитарно-гигиенические требования» устанавливаются оптимальные и допустимые метеороло-гические условия в рабочей зоне производственной среды с учётом:

1. Время года – холодный и переходный периоды со среднесуточной температурой воздуха ниже + 10 °С; тёплый период – выше + 10 °С;

2. Тяжесть физической работы – все работы по тяжести подразделяются на три категории: к лёгким физическим работам (категория I) относятся работы, не требующие систематического физического напряжения при затратах энергии человеком не более 172 Вт; к работам средней тяжести (категория II a) относятся работы, связанные с постоянной ходьбой, не требующие перемещения тяжестей, с энергозатратами от 172 до 232 Вт; к работам средней тяжести (категория II б) относятся работы, связанные с ходьбой и переносом небольших тяжестей (до 10 кг), с энергозатратами от 232 до 293 Вт; к тяжёлым физическим работам (категория III) относятся работы, связанные с систематическим физическим напряжением, в частности с переносом значительных (более 10 кг) тяжестей, с энергозатратами более 293 Вт.

3. Тепловая характеристика производственного помещения – все производственные помещения делятся на помещения с незначительными избытками явной теплоты, не превышающими 23 Вт/м 3 и значительными избытками явной теплоты – более 23 Вт/м 3 .

При оптимальных параметрах микроклимата обеспечивается тепловой комфорт и высокая работоспособность человека, при допустимых значениях параметров микроклимата может наблюдаться временное понижение работоспособности человека, которое быстро нормализуется, не вызывая нарушения здоровья человека.

Оптимальные значения параметров микроклимата с учётом избытков явной теплоты, тяжести выполняемой работы и сезонов года приведены в таблице.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Безопасность жизнедеятельности как наука
Жизнедеятельность – это повседневная деятельность и отдых, т.е. способ существования человека. Приступая к изучению основ безопасности жизнедеятельности человека в техносф

Экология
Экология биосферыЭкология техно

Человек – среда обитания
Жизнь и деятельность человека находится в непрерывном взаимодействии с окружающей средой. Человек и окружающая его среда обитания образуют постоянно действующую систему «человек – с

Понятие о вредных и опасных производственных факторах
Опасный производственный фактор – негативное воздействие на человека, которое приводит к травме или летальному исходу. Вредный фактор – негативное воздействие на человека,

Документы по охране труда
Основы образования в области безопасности в нашей стране были заложены в 30 – х годах XX столетия, а подготовка специалистов в области БЖД начата недавно, лишь в 90 – е годы.

Документы по охране труда
Охрана туда – система сохранения жизни и здоровья работников в процессе трудовой деятельности, включающая в себя правовые, социально-экономические, организационно-технические, сани

Порядковый номер стандарта в подсистеме
Шифр подсистемы

Управление охраной труда
Управление охраной труда в стране осуществляется в соответствии с законодательством по охране труда Министерством труда и социального развития РФ и его территориальными органами, пр

За соблюдением норм ОТ
Основными видами контроля являются: 1. Оперативный контроль – осуществляется руководителем работ и другими должностными лицами (мастером, начальником цеха и т.д.);

Понятие о производственном травматизме
Производственный травматизм характеризуется травмами и несчастными случаями на производстве в результате воздействия на работающего опасного производственного фактора при выполнении

Расследование и учет несчастных случаев
В соответствии с положением об особенностях расследования несчастных случаев на производстве (Постановление от 24.10.02 г. № 73) в отдельных отраслях и организациях расследованию и

Методы анализа травматизма
Для анализа производственного травматизма применяют следующие методы: статистический, топографический, монографический, экономичес-кий и др. 1. Статистический метод основан

Безопасного труда
Комплексная оценка соответствия рабочих мест требованиям нормативных документов по ОТ именуется широко распространенным в настоящее время термином – АТТЕСТАЦИЯ РАБОЧИХ МЕСТ.

Элементы психологии безопасного труда
В системах электроснабжения оператор (дежурный, оперативно-ремонтный электротехнический персонал) в порядке технической эксплуатации осуществляет управление огромными потоками элект

Воздух рабочей зоны
Под рабочей зоной производственных помещений понимается зона высотой 2 м над уровнем пола или площадки постоянного или временного пребывания работающих. Воздух представляет

Оптимальные значения параметров микроклимата
для помещений с незначительными избытками явной теплоты Категория работ Холодное и переходное время года Тёплое время го

Обеспечение нормальных параметров воздуха рабочей зоны
Поддержание на заданном уровне параметров, определяющих микроклимат – температуру, влажность и скорость движения воздуха, может осуществляться с помощью кондиционирования или вентил

Расчёт вентиляции
Количество воздуха, необходимого для вентиляции производственного помещения определяют расчётным путём, исходя из количества выделения теплоты, влаги, вредных веществ. При

Тепловое излучение. Защита от теплового излучения
Известно, что нагретые тела отдают своё тепло менее нагретым теплопроводностью (при непосредственном контакте), конвекцией (путём передачи теплоты через окружающий воздух) и теплоиз

Данные интенсивности теплоизлучения и характер воздействия
его на организм человека Интенсивность излучения, ккал/м2·ч Характер воздействия

Производственный шум и вибрация
Шум – это беспорядочное сочетание звуков различной частоты и интенсивности, которые неблагоприятно воздействуют на организм человека, мешают работе и отдыху. Звук

Спектры шумов
Каждый источник шума может быть представлен составляющими его тонами в виде зависимостей уровней звукового давления от частоты (частотный спектр шума или просто спектр). Спектры шум

Некоторые данные по шуму
3-20 дБ – практически безвредно для человека, это естественный шумовой фон; 70 дБ – громкая речь; 80 дБ – допустимая граница звуков на производстве по шкале «А» шу

Действие шума на организм человека и нормирование шума
Многочисленными исследованиями установлено, что шум является общебиологическим раздражителем и в определенных условиях может влиять на все органы и системы организма человека.

Защита от шума
Защита работающих от шума может осуществляться как коллективными средствами и методами, так и индивидуальными средствами. В первую очередь надо использовать коллективные средства, к

Вибрация
Вибрация – это колебательные движения систем с упругими связями, воспринимаемые организмом человека как сотрясения. Вибрация характеризуется следующими параметрами:

Нормирование вибрации
Для оценки степени вредного воздействия на человека вибрация нормируется в соответствии с ГОСТом 12.1.012-90 «ССБТ Вибрация. Общие требования безопасности». Нормируемыми параметрами

Защита от вибрации
Защита от воздействия вибрации ведется следующими путями: 1. Уменьшение вибрации в источнике её возникновения (качественная сборка и регулирование установленного оборудован

Производственное освещение
Недостаточность освещения вызывает утомление не только органов зрения, но и организма человека в целом, возрастает опасность травм. Яркий свет оказывает слепящее действие.

Нормирование освещения
Требования к освещению на территории предприятия, в производственных и вспомогательных зданиях и помещениях установлены СНиП 23-05-95 «Естественное и искусственное освещение». Эти н

Методика расчёта искусственного освещения
Расчёт может выполнятся различными методами. Наиболее распространенным в проектной практике является расчёт освещения по методу коэффициента использования светового потока лампы

Электромагнитные поля
Источниками электромагнитных полей (ЭМП) в природе являются: магнитные бури, во время которых напряженность магнитного поля земли может вырастать в тысячи, а иногда в десятки тысяч

Средства и способы защиты от ЭМП
Применяют следующие способы и средства защиты: экранирование установки (источника ЭМП) и рабочего места; удаление рабочего места от источника ЭМП на безопасное расстояние (защита ра

Характеристики воздействия излучения
Биологическое действие ионизирующего излучения зависит от вида излучения и поглощенной дозы. Поглощенная доза Д – это средняя энергия, переданная излучение

Нормирование излучения
Нормами радиоактивной безопасности (НРБ-96) установлены следующие категории облучаемых лиц: Группа А – персонал, т.е. лица, непосредственно работающие с ис

Основы электробезопасности
Любое современное производство, в том числе и теплоэнергетическое, насыщено электрооборудованием, измерительной техникой, автоматикой. Помещения котельных, теплопотребляющего и вспо

Воздействие электрического тока на человека
Отличие воздействия электрического тока на человека от действий других опасных производственных факторов заключается в том, что человек, не имея специальных приборов, только органам

Нормирование
Анализ опасности поражения человека электрическим током в электрических установках сводится к определению значения тока в цепи тела человека Ih. Значения этого ток

До 1 кВ
Система ТN- система, в которой нейтраль источника питания глухо заземлена, а ОПЧ присоединены к глухозаземленной нейтрали посредством нулевых защитных провод

Схемы включения человека в электрическую цепь тока
Существуют различные схемы включения человека в электрическую цепь тока: - однофазное прикосновение – прикосновение к проводнику одной фазы действующей электроустановки;

Физические основы протекания тока в земле
Стекание тока в землю происходит через проводник, находящийся с ней в непосредственном контакте. При замыкании одной фазы электроустановки на землю происходит резкое снижен

Через шаровой заземлитель
Для определение потенциала, создаваемого в земле и на её поверхности при протекании тока через заземлитель, рассматриваем заземлитель как шаровой – радиусом r (м) (рис. 2) Че

Контроль изоляции
Контроль изоляции - особо остро стоит при эксплуатации электрических сетей, работающих в режиме изолированной нейтрали. При однофазном прикосновении ток, протекающий через человека

Зануление. Защитное отключение
Защитное зануление – преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью трансформатора или генератора, выполняемое в целях электробезопасности. Занул

Повторное заземление нулевого защитного проводника
Элементом системы зануления являются повторное заземление нулевого защитного проводника - через сопротивление Rп (рис. 3).

Защитное отключение
Защитное отключение - быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения человека током. Такая опасность может возникнут

Требования безопасности к котлам
Паровые котлы работают под повышенным давлением, вода и пар, заключенные в них, имеют высокую температуру. Разрушения котлов приводят к тяжелым последствиям: повреждению оборудовани

И обслуживающего персонала
К самостоятельной работе по обслуживанию и ремонту котлов персонал допускают после обучения на специальных курсах и проверки знаний. В работе комиссии по проверке знаний участвует представ

Промышленных котельных установок
Работы по ремонту оборудования промышленных котельных установок относятся к категории повышенной опасности, т.к. они сопряжены с пребыванием людей в металлических ёмкостях, топках, газоходах и друг

И горячей воды
В теплосиловом хозяйстве различают следующие виды трубопроводов: насыщенного и перегретого пара, питательные, циркуляционные, конден-сатные, сырой, технической, пожарной, химически

Кислоты
Попадание кислоты на кожный покров вызывает трудноизлечимые и болезненные ожоги, а попадание в глаза грозит потерей зрения. При смешивании кислоты с водой выделяется большое количество теплоты. Поэ

При работе с ВДТ и пэвм
Зависят от вида и категории трудовой деятельности. Виды трудовой деятельности разделяются на 3 группы: А – работа по считыванию информации с экрана ВДТ или ПЭВМ с

Пользователей пэвм
Профессиональные пользователи должны проходить обязательные предварительные (при поступлении на работу) и периодические медицинские осмотры. Женщины со времени установления

Общие требования к заземляющим устройствам
Для заземления электроустановок в очередь используются естественные заземлители, искусственные заземлители используются только при отсутствии естественных заземлителей или для сниже

Грунт и его структура
Земля является плохим проводником электрического тока и проводимость ее много меньше проводимости металлов. Однако она оказывает сравнительно небольшое сопротивление току, так как п

Зависимость удельного сопротивления грунта от влажности
Примерное значение удельного сопротивления грунтов в естественных условиях приведены в табл. 1. Таблица 1. Удельное сопротивление грунтов

V. МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

1. Параметры микроклимата и их измерение

Условия микроклимата в производственных помещениях зависят от ряда факторов:

    климатического пояса и сезона года;

    характера технологического процесса и вида используемого оборудования;

    условий воздухообмена;

    размеров помещения;

    числа работающих людей и т.п.

Микроклимат в производственном помещении может меняться на протяжении всего рабочего дня, быть различным на отдельных участках одного и того же цеха.

В производственных условиях характерно суммарное (сочетанное) действие параметров микроклимата : температуры, влажности, скорости движения воздуха .

В соответствии с СанПиН 2.2.4.548 – 96 «Гигиенические требования к микроклимату производственных помещений» параметрами, характеризующими микроклимат являются:

    температура воздуха ;

    температура поверхностей (учитывается температура поверхностей ограждающихконструкций (стены, потолок, пол), устройств (экраны и т.п.), а также технологического оборудования или ограждающих его устройств);

    относительная влажность воздуха ;

    скорость движения воздуха ;

    интенсивность теплового облучения .

Температура воздуха , измеряемая в 0 С, является одним из основных параметров, характеризующих тепловое состояние микроклимата. Температура поверхностей и интенсивность теплового облучения учитываются только при наличии соответствующих источников тепловыделений.

Влажность воздуха - содержание в воздухе водяного пара. Различают абсолютную, максимальную и относительную влажность.

Абсолютная влажность (А) - упругость водяных паров, находящихся в момент исследования в воздухе, выраженная в мм ртутного столба, или массовое количество водяных паров, находящихся в 1 м 3 воздуха, выражаемое в граммах.

Максимальная влажность (F) - упругость или масса водяных паров, которые могут насытить 1 м 3 воздуха при данной температуре.

Относительная влажность (R) -это отношение абсолютной влажности к максимальной, выраженное в процентах.

Скорость движения воздуха измеряется в м/с.

Измерение параметров микроклимата.

В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров.

Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры. При использовании психрометров дополнительно измеряют атмосферное давление с помощью барометров – анероидов.

Скорость движения воздуха измеряется крыльчатыми и чашечными анемометрами.

Рассмотрим примеры приборов, традиционно используемых для измерения параметров микроклимата.

Аспирационный психрометр МВ-4М

Аспирационный психрометр МВ - 4М предназначен для определения относительной влажности воздуха в диапазоне от 10 до 100 % при температуре от -30 до +50 0 С. Цена деления шкал термометров не более 0,2 0 С. Принцип его работы основан на разности показаний сухого и смоченного термометров в зависимости от влажности окружающего воздуха. Он состоит из двух одинаковых ртутных термометров, резервуары которых помещены в металлические трубки защиты. Эти трубки соединены с воздухопроводными трубками, на верхнем конце которых укреплен аспирационный блок с крыльчаткой, заводимой ключом и предназначенной для прогона воздуха через трубки с целью сделать более интенсивным испарение воды со смоченного термометра.

Анемометр крыльчатый АСО-3

Крыльчатый анемометр применяется для измерения скоростей движения воздуха в диапазоне от 0,3 до 5 м/с. Ветроприемником анемометра служит крыльчатка, насаженная на ось, один конец которой закреплен на неподвижной опоре, а второй через червячную передачу передает вращение редуктору счетного механизма. Его циферблат имеет три шкалы: тысяч, сотен и единиц. Включение и выключение механизма производится арретиром. Чувствительность прибора не более 0,2 м/с.

В последнее время для определения параметров микроклимата производственных помещений успешно применяются аналого-цифровые приборы.

Портативный измеритель влажности и температуры ИВТМ – 7

Прибор предназначен для измерения относительной влажности и температуры, а также для определения других температуро-влажностных характеристик воздуха. В качестве чувствительного элементаизмерителя температурыиспользуется пленочный терморезистор, выполненный из никеля. Чувствительным элементом измерителя относительной влажности является емкостной датчик с изменяющейся диэлектрической проницаемостью. Принцип работы прибора основан на преобразовании емкости датчика влажности и сопротивления датчика температуры в частоту с дальнейшей обработкой ее с помощью микроконтроллера. Микроконтроллер обрабатывает информацию, отображает ее на жидкокристалическом индикаторе и одновременно выдает с помощью интерфейса RS – 232на компьютер.

Анемометр Testo – 415

Прибор предназначен для измерения скорости воздуха и температуры в помещениях. Информация отображается на большом двухстрочном дисплее. Прибор имеет возможность усреднения результатов измерений по времени и числу замеров.

Разработка новых технологических средств контроля и регуляции воздушной среды в производственных помещениях обусловлена необходимостью повышения требований к качеству условий работы. В благоприятной для самочувствия и здоровья в целом среде люди эффективнее справляются со своими обязанностями, что напрямую отражается на объемах производства. На данный момент ключевые факторы обеспечения чистого воздуха базируются на использовании устройств кондиционирования и промышленной вентиляции. Центральное же место в контексте рассмотрения проблем создания оптимальных условий для работы в помещениях занимает микроклимат - это совокупность показателей климата среды внутри производственного объекта. То есть можно выделить два аспекта, важных с точки зрения сохранения оптимального качества воздуха в помещении, - это микроклимат и его параметры.

Что такое производственный микроклимат?

В современных регламентах, предусмотренных для организации немало внимания уделяется безопасности рабочих. На фоне усложнения технологий изготовления, переработки и утилизации на предприятиях возникает и потребность в соответствующей защите людей. В плане определения концепции защиты персонала наибольшее значение имеет именно микроклимат - это совокупность параметров воздушной среды, на основе которых определяются допустимые и оптимальные величины температуры, влажности, теплового облучения и других характеристик. В дальнейшем они становятся отправной точкой для выработки стратегии создания комфортных условий для плодотворной работы людей на предприятии.

Факторы, влияющие на значение параметров

Формирование микроклимата происходит под действием нескольких факторов, определяющих и значения его параметров. В течение дня их показатели могут меняться, а на отдельных участках и вовсе различаться в одно и то же время. В список основных факторов, определяющих параметры микроклимата, входят следующие:

  • климатический пояс и время года;
  • размеры цехов, помещений, отделов;
  • условия и характеристики воздухообмена;
  • техническое обеспечение производственного процесса;
  • количество сотрудников.

Параметры микроклимата

При анализе условий формирования микроклимата в рабочем процессе параметры могут рассматриваться как по отдельности, так и в совокупности. К показателям, характеризующим производственную среду, относят скорость перемещения, значения влажности и температуру воздуха. Помимо этого, также учитывается возможное термооблучение. как правило, определяется характеристиками поверхностей. В частности, берется во внимание состояние конструкций и оборудования (агрегаты, приборы, экраны). Температурные параметры микроклимата учитываются только при условии наличия средств, обеспечивающих тепловыделение. Это же относится и к облучению теплом. Показатели влажности основываются на коэффициентах пара, который содержится в воздушной среде. При этом влажность может рассчитываться как максимальная, относительная и абсолютная.

Влияние микроклимата на организм

Параметры производственного микроклимата напрямую воздействуют на состояние человека. К примеру, снижение показателя температуры и увеличение скорости движения воздушных потоков усиливает конвективный теплообмен и теплоотдачу. Это происходит в процессе испарения пота и может способствовать переохлаждению организма. И напротив, производственный микроклимат может спровоцировать обратные процессы, если температура воздуха повышается. Влажность также играет немалую роль в воздействии производственной среды на тело человека. С этим показателем связаны переносимость организмом температуры и его тепловые ощущения. Если относительная влажность повышается, то испарение пота происходит медленнее и возникает риск перегрева организма.

Неблагоприятные воздействия на тепловые ощущения в большей степени оказывает повышенная влажность в условиях, когда температура превышает 30°С. Весь объем тепла, выделяемого на фоне испарения пота, будет уходить в окружающую среду, которую формирует рабочий микроклимат в данном помещении. Высокие показатели влажности исключают возможность испарения пота - его капли стекают по кожному покрову. В итоге запускается процесс проливного течения пота, что изнуряюще действует на человека и препятствует оптимальной теплоотдаче.

Санитарно-гигиенические требования

Нормы, регулирующие характеристики микроклимата, закреплены в санитарно-гигиенических актах для производственных объектов. В регламенте приводятся гигиенические требования к микроклимату, предусматривающие оптимальные и допустимые значения температуры, скорости движения и влажности воздушной среды. Кроме этого, существуют требования к тепловому облучению для производственных помещений с учетом трудовых нагрузок и времени года.

Выполнение установленных нормативов не всегда возможно на предприятиях, где противоречат технологические требования. В таких случаях соблюдение правил надзорных служб не позволяет достичь экономической целесообразности в работе предприятия. Однако это не значит, что руководители не предпринимают соответствующих мер по созданию благоприятных рабочих условий. В качестве альтернативы практикуется введение мер по защите работающих средствами специальной безопасности.

Оптимальные показатели

Благоприятные микроклиматические условия на производственных объектах в большинстве случаев рассчитываются из показателей рабочего. Оптимальные требования к микроклимату направлены на обеспечение общего и локального ощущения тепловой комфортности в течение восьмичасовой смены. При этом важно, чтобы поддерживалось минимальное напряжение в процессе терморегуляции.

Одним из главных критериев в расчете оптимальных показателей микроклимата является отсутствие факторов, вызывающих отклонения в состоянии здоровья. Кроме этого, производственный микроклимат должен создавать предпосылки для повышения работоспособности людей. Требования распространяются на операторские рабочие места, где функции сотрудника могут быть связаны не только с выполнением технических задач. Это и участки, в работе на которых предусматривается также нервно-эмоциональное напряжение, к примеру, пульты и посты управления, комплексы с вычислительной техникой и кабинеты, откуда оператор управляет технологическими процессами.

Допустимые условия микроклимата

Для формирования условий с допустимыми параметрами используются менее жесткие требования. Так как производственный микроклимат - это совокупность показателей по разным факторам в рабочей среде, крайние показатели нередко становятся единственно возможными. В таких случаях и применяются нормативы с допустимыми значениями. При их соблюдении исключается риск серьезных отклонений в здоровье сотрудников, но влияние на конкретные и общие ощущения в виде дискомфорта, появления плохого самочувствия и снижения работоспособности все-таки возможны. Например, допустимые значения температуры воздушной среды в зависимости от характера рабочего процесса могут составлять от 3 до 5°C, что иногда вызывает дискомфорт, если не предусмотрены специальные средства индивидуальной защиты.

Средства измерения параметров микроклимата

Чтобы определить показатели условий микроклимата, необходимо использовать соответствующие измерительные приборы. Традиционным устройством для контроля температурного режима является термометр, но могут применяться и термографы, с помощью которых фиксируются показатели в определенном промежутке времени. Более широкий перечень устройств используется для определения влажности, на которую также распространяются требования к микроклимату помещений в виде конкретных величин. Это могут быть стационарные и аспирационные а также барометры - анероиды, применяемые и в измерении атмосферного давления.

Профилактика неблагоприятного влияния

Как уже отмечалось, придерживаться требований к микроклимату не всегда возможно, и отклонение от допустимых показателей требует проведения профилактических мероприятий, направленных на устранение вредного влияния. Реализуются они разными средствами, в том числе за счет использования систем воздушного кондиционирования, применения индивидуальных защитных средств от влияния низких и высоких температур и т. д. Поскольку микроклимат - это состояние среды, которая может быть локальной на объекте, нередко практикуется дифференциация помещений на предприятиях в зависимости от характеристик воздуха. Это позволяет обустраивать специальные комнаты отдыха, в которых рабочие нормализуют состояние своего организма.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Юридический портал. Льготный консультант